Algorithm/Online judge

[백준] 13305번 > 주유소

민철킹 2021. 2. 16. 15:16

www.acmicpc.net/problem/13305

 

13305번: 주유소

표준 입력으로 다음 정보가 주어진다. 첫 번째 줄에는 도시의 개수를 나타내는 정수 N(2 ≤ N ≤ 100,000)이 주어진다. 다음 줄에는 인접한 두 도시를 연결하는 도로의 길이가 제일 왼쪽 도로부터 N-1

www.acmicpc.net

문제

어떤 나라에 N개의 도시가 있다. 이 도시들은 일직선 도로 위에 있다. 편의상 일직선을 수평 방향으로 두자. 제일 왼쪽의 도시에서 제일 오른쪽의 도시로 자동차를 이용하여 이동하려고 한다. 인접한 두 도시 사이의 도로들은 서로 길이가 다를 수 있다. 도로 길이의 단위는 km를 사용한다.

처음 출발할 때 자동차에는 기름이 없어서 주유소에서 기름을 넣고 출발하여야 한다. 기름통의 크기는 무제한이어서 얼마든지 많은 기름을 넣을 수 있다. 도로를 이용하여 이동할 때 1km마다 1리터의 기름을 사용한다. 각 도시에는 단 하나의 주유소가 있으며, 도시 마다 주유소의 리터당 가격은 다를 수 있다. 가격의 단위는 원을 사용한다.

예를 들어, 이 나라에 다음 그림처럼 4개의 도시가 있다고 하자. 원 안에 있는 숫자는 그 도시에 있는 주유소의 리터당 가격이다. 도로 위에 있는 숫자는 도로의 길이를 표시한 것이다. 

제일 왼쪽 도시에서 6리터의 기름을 넣고, 더 이상의 주유 없이 제일 오른쪽 도시까지 이동하면 총 비용은 30원이다. 만약 제일 왼쪽 도시에서 2리터의 기름을 넣고(2×5 = 10원) 다음 번 도시까지 이동한 후 3리터의 기름을 넣고(3×2 = 6원) 다음 도시에서 1리터의 기름을 넣어(1×4 = 4원) 제일 오른쪽 도시로 이동하면, 총 비용은 20원이다. 또 다른 방법으로 제일 왼쪽 도시에서 2리터의 기름을 넣고(2×5 = 10원) 다음 번 도시까지 이동한 후 4리터의 기름을 넣고(4×2 = 8원) 제일 오른쪽 도시까지 이동하면, 총 비용은 18원이다.

각 도시에 있는 주유소의 기름 가격과, 각 도시를 연결하는 도로의 길이를 입력으로 받아 제일 왼쪽 도시에서 제일 오른쪽 도시로 이동하는 최소의 비용을 계산하는 프로그램을 작성하시오.

입력

표준 입력으로 다음 정보가 주어진다. 첫 번째 줄에는 도시의 개수를 나타내는 정수 N(2 ≤ N ≤ 100,000)이 주어진다. 다음 줄에는 인접한 두 도시를 연결하는 도로의 길이가 제일 왼쪽 도로부터 N-1개의 자연수로 주어진다. 다음 줄에는 주유소의 리터당 가격이 제일 왼쪽 도시부터 순서대로 N개의 자연수로 주어진다. 제일 왼쪽 도시부터 제일 오른쪽 도시까지의 거리는 1이상 1,000,000,000 이하의 자연수이다. 리터당 가격은 1 이상 1,000,000,000 이하의 자연수이다. 

출력

표준 출력으로 제일 왼쪽 도시에서 제일 오른쪽 도시로 가는 최소 비용을 출력한다. 

예제 입력 1 복사

4

2 3 1

5 2 4 1

예제 출력 1 복사

18

예제 입력 2 복사

4

3 3 4

1 1 1 1

예제 출력 2 복사

10

 


풀이

문제의 논리는 간단하다. 맨 끝값을 제외하고 나보다 오른쪽 도시의 기름 값이 더 싼 곳이 있다면 현재 이동거리만큼만 기름을 구매하고, 현재 도시가 제일 싸다면 그 도시에서 남은 거리만큼의 기름을 다 사면 되는 전형적인

Greedy 알고리즘 문제이다.

 

n = int(input())
path = list(map(int, input().split()))
cost = list(map(int, input().split()))
sum_cost = 0
# 나보다 오른쪽 도시의 기름값이 더 싼곳(맨 끝값은 제외)이 있다면 거리만큼만 기름 충전, 없다면 남은 거리 싹다 충전해버리기
temp = cost[0]
for i in range(n-1):
    if cost[i] <= temp:
        temp = cost[i]
    sum_cost += temp*path[i]
print(sum_cost)

처음에는 슬라이싱와 min값을 통해 구현하였는데 시간초과떠서 변수에 최소값을 저장해놓고 계속 비교해가며 구하는 식으로 바꾸었더니 통과할 수 있었다.

반응형